US Navy Lockheed Martin F-35C Stealth Fighters Aircraft Carrier Flight Testing

Compared to the F-35A, the F-35C carrier variant features larger wings with foldable wingtip sections, larger wing and tail control surfaces for improved low-speed control, stronger landing gear for the stresses of carrier arrested landings, a twin-wheel nose gear, and a stronger tailhook for use with carrier arrestor cables. The larger wing area allows for decreased landing speed while increasing both range and payload.
The United States Navy intends to buy 480 F-35Cs to replace the F/A-18A, B, C, and D Hornets and complement the Super Hornet fleet. On 27 June 2007, the F-35C completed its Air System Critical Design Review (CDR), allowing the production of the first two functional prototypes. The C variant was expected to be available beginning in 2014. The first F-35C was rolled out on 29 July 2009. The United States Marine Corps will also purchase 80 F-35Cs, enough for five squadrons, for use with navy carrier air wings in a joint service agreement signed on 14 March 2011. A recent 2014 document stated that the USMC will also have 4 squadrons of F-35Cs with 10 aircraft per squadron for the Marine Corps’ contribution to U.S. Navy carrier air wings.
On 6 November 2010, the first F-35C arrived at Naval Air Station Patuxent River. The replacement engines for at-sea repair are too large to be transported by current underway replenishment systems. In 2011, the F-35Cs were grounded for six days after a software bug was found that could have prevented the control surfaces from being used during flight. On 27 July 2011, the F-35C test aircraft CF-3 completed its first steam catapult launch during a test flight at Naval Air Engineering Station Lakehurst; the TC-13 Mod 2 test steam catapult, representative of current fleet technology, was used. In addition to catapult launches at varying power levels, a three-week test plan included dual-aircraft jet blast deflector testing and catapult launches using a degraded catapult configuration to measure the effects of steam ingestion on the aircraft.
On 13 August 2011, the F-35 successfully completed jet blast deflector (JBD) testing at Lakehurst. F-35C test aircraft CF-1 along with an F/A-18E tested a combined JBD cooling panel configuration. The tests measured temperature, pressure, sound level, velocity, and other environmental data; the JBD model will enable the operation of all carrier aircraft, including the F-35C. Further carrier suitability testing continued in preparation for initial ship trials in 2013. On 18 November 2011, the U.S. Navy used its new Electromagnetic Aircraft Launch System (EMALS) to launch an F-35C into the air for the first time.
The U.S. Navy may use the F-35C as part of its UCLASS effort to operate a carrier-based unmanned aerial vehicle. Though it has been suggested that the UCLASS could carry air-to-air weapons, an unmanned aircraft lacks situational awareness and is more vulnerable to electronic countermeasures than manned aircraft, and autonomy for deploying lethal weapons is not under development. With the F-35C as the center of a network of naval systems, it could feed information to the UCLASS and order it to fire on a certain target. Large numbers of F-35Cs operating in contested environments can generate a clear picture of the battlespace, and share it with unmanned assets that can be directed to attack.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s